The Brazilian developments on the Regional Atmospheric Modeling System Unified Version (5.2)

- Atmos. Chemistry, Physical and Dynamics Aspects,
- Operational Products and Evaluation,
- Report of 13 years at CPTEC/INPE.

S. R. Freitas, K. M. Longo, L. F. Rodrigues A. Santos, C. Santos e Silva, C. Pavani, D. França, D. Moreira, F. Batista, F. Cavalcante, G. Pereira, G. Ferrada, G. Camponogara, I. Menezes, J. Larise, M. Gácita, M. Alonso, M. Zarzur, N. Rosário, R. Fonseca, R. Stockler, R. Siqueira, R. Braz, V. Oliveira.

http://meioambiente.cptec.inpe.br

Outline

- Operational products and evaluation of previous version (5.0) and of the new version (5.2)
- Some physical and dynamics aspects of version 5.2
- Brief report of 13 years at CPTEC/INPE
- Network of collaborators and developers

INPE

Real Time Air Quality and Weather Forecasts for South America Since March 2003

500 hPa CO (ppbv) Surface level CO (ppbv) 12Z-12SFP2007 Tempo | Clima | Previsões Numéricas | Satélite | Ondas | Energia | Obs. & Instrumentação | Qualidade do Ar | Mudancas Climáticas POR REGIÕES POR REGIÕES Escolha uma região 😪 Oualidade do Oualidade OUALIDADE DO AR EMISSÕES DE QUEIMADAS EMISSÕES URBANO / INDUSTRIAIS EMISSÕES URBANO / INDUSTRIAIS OLIAL IDADE DO AR EMISSÕES DE OUEIMADAS CATT-BRAMS - CPTEC/INPE 🔄 🛡 🔍 🔍 L 🟤 🦉 🕽 CATT-BRAMS - CPTEC/INPE Monóxido de Carbono (ppb) 5000m - Total Monóxido de Carbono (ppb) 74m - Total Perfil O Série Série por Estad 12/SEP/2007 12Z (Inicialização: 12/SEP/2007 00Z) 14/SEP/2007 21Z (Inicialização: 12/SEP/2007 00Z) Taxa de Emissões ¥ Poluentes Monóxido de Carbono (CO) 2000 Nível vertica 5000m 💙 1500 Campo de vento 1250 200 Data inicial: 1000 190 2007-09-13 💌 750 Horário das image 500 170 12/09 00h 03h 06h 09h 12h 15h 18h 21h 400 350 13/09 00h 03h 06h 09h 12h 15h 18h 21h 250 4/09 00h 03h 06h 09h 12h 15h 18h 21h 175 15/09 150 125 Coordenadas UTM 340 650 1020 Horizonta Horizonta 340 680 DOCUMENTAÇÃO DOCUMENTAÇÃO LINKS PESSOAL LINKS PESSOAL NOTÍCIAS NOTÍCIAS → Modelo CATT-BR Campos Atmosféricos 10/08/2 > Model ATT BRAMS 10/08/2007 --> Publicações > Detecção de Queimadas Public eccão de Nonitoramento de Queimadas do INPE conta Casos Interpretente Sigma com maior número de satélites O monitora Mega Cities pollution new fresh plumes Old biomass burning injected by pyrocumulus pollution plumes

A visual comparison between BRAMS and MACC/ECMWF forecast AOD at 550nm Init: 00UTC 20SEP2015 – FCT 18UTC 20SEP2015

http://meioambiente.cptec.inpe.br/ http://www.gmes-atmosphere.eu

Regional weather forecast for South America on 5km grid spacing with BRAMS: <u>Since January 2013</u>

• Grid spacing:

- Horizontal: 5 km x 5 km.
- Vertical: 50 to 800 meters
- •Time step: 15 seconds

• Model domain:

- # grid points: 1360 x 1489 x 55 ~ 100 x 10^{6}
- Model top at 21 km height ASL

• Forecast length:

• 3 ½ days, starting at 00, 12 UTC.

• Execution time :

• 20 mn on 9600 cores produces 1 day forecast

• I/O is the biggest bottleneck.

•Physics:

- MY 2.5 turbulence scheme
- 2-moments cloud microphysics with 7 water species.
- CARMA long/short wave radiation scheme
- Grell and Freitas convective parameterization
- JULES surface scheme
- IC/BC from interpolation of GFS model forecast.

BRAMS 05 km Análise Inicializada em: 22/3/2014, 00 UTC (Sábado) Válida para: 23/3/2014, 00 UTC (Domingo) Variável: Precipitação Acumulada em 24h CPTEC/INPE

An example of visual comparison of the 24-h accum. rainfall TRMM x BRAMS 5 km Real-time forecast for 00 UTC 27JUN2013

BRAMS 5 km Forecast

Rainfall estimated by TRMM

RFIFA

BRAMS + CCATT + JULES

Quantitative Evaluation of BRAMS version 5.0 (Operational implementation in January 2013)

Dados de 2013 a 2015 às 00 e 12 UTC

Avaliação Evaluation from CPTEC/DOP:

avaliacaodemodelos.cptec.inpe.br/anl/skill_regioes/mensal/phps/index.php

Anomaly correlation of geopotential height at 500 hPa

Data from Aug/2013 to July/2015 on 00 and 12 UTC

Avalaible at:

http://avaliacaodemodelos.cptec.inpe.br/anl/skill_regioes/mensal/phps/index.php

Semi-Objective Evaluation Position of Cold-Fronts

INPE

http://avaliacaodemodelos.cptec.inpe.br/anl/subjet/phps/index.php

DOP/CPTEC Evaluation Data from Aug-2013 to July-2015 (2 years) and available at: <u>http://avaliacaodemodelos.cptec.inpe.br/obs/qpf/phps/index.php</u>

2-meter Temperature 84-hour Forecast – Monthly Average for Jan/2016

Evaluation domain: Brazil

DOP/CPTEC Evaluation Data from Jan/2016 and available at: http://intercomparacaodemodelos.cptec.inpe.br/phps

 Now the evaluation of 5.2 for the new operational air quality and weather forecast on 20 km at CPTEC/INPE.

Some aspects of atmospheric chemistry in BRAMS model <u>Version 5.2</u>

Mass continuity equation in BRAMS

$$Q_s = \left(\frac{\partial \overline{s}}{\partial t}\right)_{chem} + W + R + Q$$

Q: emissions (biomass burning, urbanindustrial processes, biogenic, etc...) W: wet removal R: dry removal

Solver for chemistry: based on the Rosenbrock's methods with dynamic timestep selection based on prescribed error tolerance and of 2nd and 3rd orders.

PREP-CHEM-SRC

A preprocessor of trace gas and aerosol emissions fields

Source	Database	Resolution	Species
Urban Industrial transportation	RETRO	0.5º x 0.5º, monthly	26 chemical species
	EDGARv4.2 , EDGAR-HTAP	0.1° x 0.1°, monthly	CH4, NMVOC, CO, SO2, NOx, NH3, PM10, PM2.5, BC and OC
	S. America inventory by Alonso et al., 2011	Model resolution, monthly	CO, NO _x
Biogenic	GEIA	1° x 1°, monthlly	Acetone, C2H4, C2H6, C3H6, C3H8, CO, CH3OH, DMS, NO, isoprene, terpenes and NVOC
	MEGAN (Guenther et al., 2006)	0.5° x 0.5°, monthly	CO, CH4, C2H4, C2H6, C3H6, C3H8, CH3OH, formaldehyde, acetaldehyde, acetone, other ketones, toluene, isoprene, monoterpenes and sesquiterpenes
Biomass Burning	3BEM (Freitas et al., 2005; Longo et al., 2009) 3BEM FRE (Pereira et al., 2009)	Model resolution, daily	110 chemical species (Andreae & Merlet)
	GFED (Giglio et al. (2006) and van der Werf et al. (2006)	1° x 1°, 8 days/ monthly	110 chemical species (Andreae & Merlet)
Volcanoes	Mastin et al. (2009)	Pontual	Ash
	AEROCON (Diehl, 2009; Diehl et al., 2011)	(1535 volcanoes)	SO ₂
Biofuel use, charcoal prod. and burning of agricultural waste	Yevich and Logan (2003)	1º x 1º, annually	110 chemical species (Andreae & Merlet)

For regional and global models: BRAMS, WRF-Chem (including NASA-Unified WRF), FIM. Also emission fields on polar-stereo, Lambert-conformal, Mercator, lat-lon, gaussian grids.

Global - Regional – Local Emissions Inventories

Solar flux model x observation

REL

EA

BRAMS + CCATT + JULES

S E

Rosário, N. E., Longo, K. M., Freitas, S. R., et al.: Modeling South America regional smoke plume: aerosol optical depth variability and shortwave surface forcing. Atmos. Chem. Phys. 13, 2923, 2013.

Top PBL: +0.5 °C

Near surface:

- (1.5) °C

Aerosols Direct Radiative Effect: impact of vertical distribution

Top PBL: +0.5 °C Near surface: - (0.5 to 1.5) °C

- (0.5) °C

°C

Rosário, N. E., Longo, K. M., Freitas, S. R., et al.: Modeling South America regional smoke plume: aerosolopptical depth variability and 01-Nov shortwave surface forcing. Atmos. Chem. Phys. 13, 2923, 2013.

High resolution air quality forecast for the main urban areas of Brazil

21S 21.5S 22S 22.5S 23S Rio de Janeiro 23.5S 24S 24.5S · 48W 47W 46W 45W 43W 42W 49W 44W

Near surface Ozone (ppbv)

High resolution urban air quality forecast

Longo, K M., S. R. Freitas, M. Pirre, et al. The chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): a regional atmospheric model system for integrated air quality and weather forecasting and research. Geosci. Model Dev., 6, 1389-1405, 2013.

Monitoring the transport and dispersion of volcanic ash

Some aspects of physical parameterizations and dynamics of BRAMS model <u>Version 5.2</u>

This version of BRAMS contains the additional following physical parameterizations

- 1. Radiation:
 - CARMA (Toon et al., 1988, Rosário et al 2013) and RRTMG (Iacono et al., 2008) schemes for long- and short-wave, including aerosols effects and coupled with microphysics and convection schemes.
- 2. Microphysics:
 - a double moment from RAMS CSU version,
 - Thompson single moment in cloud liquid water and
 - Thompson double moment in cloud liquid water and aerosol aware (Thompson and Eidhammer, 2014).
- 3. Convection schemes:
 - Souza (1999) for shallow convection,
 - Grell and Deveny (2002) for deep convection and
 - Grell and Freitas (2014) scale and aerosol aware for deep and shallow convection including convective transport and wet removal of tracers.
- 4. Turbulence parameterizations:
 - Nakanishi & Nino (2004) TKE based formulation,
 - Taylor's theory based formulation (Campos Velho, 1998)

An example of the model performance for the new operation at 5 km grid spacing

BRAMS model forecast of 24-hour accumulated precipitation for 12 October 2015 and on 5 km grid spacing.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Convection scheme : GF with and without scale dependence

No convection : only cloud microphysics

Application of Grell-Freitas scheme in global simulations with variable resolution: MPAS model

Simulated total precipitation 50 – 3 km variable resolution mesh – 3 days FCT

L. Fowler et al. (MWR, in press)

Improved diurnal cycle of deep convection over the Amazonia: Applying the new closure from P. Bechtold for non-equilibrium convection

Convective Precipitation (mm/h) 1.8 900 1.6 800 14 [4/1.2 1 0.8 × 300 0.6 0.4 200 0.2 100 0 + 1FEB 2011 2FFB **3FEB** 4FEB 5FEB 6FFB

- 5 days forecast of CUPAR precipitation
- Model grid spacing: 27 km
- Area average over Amazon Basin
- BLUE = diurnal cycle closure OFF
- RED = diurnal cycle closure ON
- GREEN= surface solar radiation

Better transition from shallow to deep convection regimes

Bechtold et al., 2014; Freitas and Grell, in prep.

Resolved Precipitation simulation applying more accurate transport schemes:

Monotonic, low numerical diffusion advection scheme

- a) Monotonic (positive-definite, non-oscillatory, no under- or overshoots)
- b) Mass conservative
- c) Low numerical diffusion
- d) Also improves the preservation of non-linear tracers correlation of the original RAMS advection scheme
- e) multi-component mass conservation.

• Current/planned developments and research

New time integration schemes and high order advection operators for BRAMS model

- Currently, BRAMS employs the horizontally-explicit /vertically-implicit technique to integrate in time its dynamic core
- Additionally, split-explicit time scheme is used to integrate the slow and fast modes.
- BRAMS applies the leapfrog time scheme with Asselin filter which allied with the 2nd order advection scheme, gives a 1st order global accuracy.
- The objective of this work is to implement an additional time integration scheme and advection operator which gives at least 2nd order global accuracy.

Time integration	Status	Advection operator	Status
RK3: Runge-Kutta (Wicker and Skamarock,2002; Baldauf, 2008, 2010)	Serial run only	The polynomial flux specification (Wicker and Skamarock,2002,) with 3 rd and 5 th order of spatial approximations. Additionally, the <i>Flux</i> <i>Correct Transport</i> (FCT, Skamarock, 2006)	Serial run only
ABM3: Adams- Bashforth-Moulton 3 rd order (Wicker, 2009)	Serial run only	Weight Essentially Non-Oscillatory (WENO, Jiang and Shu, 1996; Baba and Takahashi, 2013)	Not yet
ABM3+RK2 (Freitas, in prep.)	Not yet	Suresh and Huynh (1997). This scheme is similar to piecewise parabolic method with a limiting approach which preserves both monotonicity and accuracy.	Not yet
SSP-RK (Durran, 2010)	Not yet	-	-

S. Freitas and R. Mello (CPTEC), H. Campos Velho (LAC/INPE), J. Panetta (ITA) and M. Baldauf (DWD/Germany)

Data Assimilation

- 3D-VAR Global Statistical Interpolation
- Participants:
 - E. Vendrasco, L. Sapucci, C. Pavani (GDAD/CPTEC)
 - P. Silva Dias (USP)
 - M. Pagowski (ESRL/NOAA)
 - H. Campos Velho (LAC/INPE, to be invited)
 - S. Freitas (INPE NASA)

Fire Spreading model

- Ph.D. thesis of Isilda Menezes (Univ. Évora), 2016
- In collaboration with ICAAM / Portugal

MATRIX Aerosol Model

K. Longo, A. Santos, L. Flávio, M. Sanchez and S. Freitas

BRAMS at CPTEC/INPE:

a 13 years history

BRAMS developments and implementations at CPTEC/INPE:

a 13 years history

Funding Agencies and Companies which contributed for the development of the BRAMS System in CPTEC/INPE

- Petrobras
- CNPq (projetos regulares, bolsas)
- Capes (bolsas)
- FAPESP (projetos regulares, bolsas)
- Min. da Saúde
- IBAMA
- IAI
- COPEL
- INTEL

Publications, capacity building, operational products: period 2003 - 2016

Index	Quantity
Journal Papers	> 100
Workshop Papers	> 200
Master theses	13 / 1
Doctorate theses	13 / 5
Operational products	 Global soil moisture Air quality and weather forecast (20 km) Weather forecast (5km) Severe weather forecast (adaptive grid - 1km)
Special operational products for field campaigns	 BARCA, SAMBBA, GoAmazon, CHUVA
Training	Four BRAMS tutorials

Current collaborations

- NOAA/ESRL: physical parameterizations, data assimilation, fire emissions and plumerise
- DWD/Germany: new dynamic core
- KIT/Germany: fire emissions and plumerise
- NASA/Goddard: fire emissions and plumerise
- SENAMHI/PERU: air quality forecast
- CNEA/Argentina: Emissions and air quality research
- LNCC, USP, UFRJ, UFCG, UNIFESP(2), UFRN, SISAM, UFPEL, UNESP,
- Several computer companies (SGI, INTEL...)

Institutions which are currently applying BRAMS for research and real-time forecast

